Gefahren durch

Lithium-Ionen-Batterien

Roland Goertz

Roland Goertz Feuerwehrwissenschaftliches Institut | Direktor

BERGISCHE UNIVERSITÄT WUPPERTAL

Laborräume - Analytiklabor

Laborräume - Löschmittellabor

Laborräume – Brandlabor und Cone-Labor

BERGISCHE UNIVERSITÄT WUPPERTAL

Cone Calorimeter

BERGISCHE UNIVERSITÄT WUPPERTAL

Druckbehälter (40 bar) für thermisches Durchgehen von Li-Ionen Zellen im abgeschlossenen Raum.

Analyse der Emissionen beim thermischen Durchgehen

Auflageblech mit Klemmschiene und Heizelementen für Li-Ionen Zellen

Druckfeste Bolzendurchführungen für das Einbringen von Mess- und Heiztechnik in den Druckbehälter

BERGISCHE UNIVERSITÄT WUPPERTAL

BERGISCHE UNIVERSITÄT WUPPERTAL

Kühlfallen (Edelstahl) zum Auffangen und –trennen von Ventinggasen (A) und Waschflaschen (PTFE, mit Carbonat-Puffer) zum Auffangen von Fluorwasserstoff und anderen wasserlöslichen Verbindungen (B).

BERGISCHE UNIVERSITÄT WUPPERTAL

Sekundär

= wiederaufladbar

Univ.-Prof. Dr. Roland Goertz

Sekundär = wiederaufladbar

Quelle: J. Tübke, Fraunhofer ICT Pfinztal, Elektrische Speicher

Kathodenmaterialien

BERGISCHE UNIVERSITÄT WUPPERTAL

Abbildung aus: Ketterer, Karl, Möst, Ulrich Forschungszentrum Karlsruhe, Wissenschaftlicher Bericht FZKA 7503, Oktober 2009

Aus: Peter Lamp, Anforderungen an Batterien für die Elektromobilität, in Handbuch Lithium-Ionen-Akkus, S. 404, Springer Vieweg 2013

Univ.-Prof. Dr. Roland Goertz

Univ.-Prof. Dr. Roland Goertz

Anodenmaterialien

Anode

auf Kupferfolie als Elektrodenmaterial

als Lösungsmittel

Name	Struktur	Siedetemperatur	Flammpunkt
Ethylencarbonat (EC)		248 °C	160 °C
Propylencarbonat (PC)		242 °C	135 °C
Dimethylcarbonat (DMC)		90 °C	15 °C
Diethylcarbonat (DEC)		127 °C	33 °C
Ethylmethylcabonat (EMC)		108 °C	23 °C

Univ.-Prof. Dr. Roland Goertz

Sekundär

= wiederaufladbar

Ester

1.0

Name	Struktur	Siedetemperatur	Flammpunkt
Ethylacetat (EA)		77 °C	-4 °C
Methylpropylacetat (MP)		102 °C	11 °C

Ether

Name	Struktur	Siedetemperatur	Flammpunkt
Tetrahydrofuran		65 °C	-17 °C

Sekundär = wiederaufladbar

Lithiumhexafluorophosphat LiPF₆

andere...

Univ.-Prof. Dr. Roland Goertz

LITHIUM-IONEN-ZELLE

Univ.-Prof. Dr. Roland Goertz

Lehrstuhl für Abwehrenden Brandschutz

BERGISCHE UNIVERSITÄT

WUPPERTAL

Univ.-Prof. Dr. Roland Goertz

Lehrstuhl für Abwehrenden Brandschutz

Li-Ionen-Zelle

BERGISCHE UNIVERSITÄT WUPPERTAL

Sekundär

= wiederaufladbar

Univ.-Prof. Dr. Roland Goertz

R. Korthauer (Ed.) Handbuch Lithium-Ionen-Batterien, Springer Berlin Heidelberg, Berlin, Heidelberg, s.l., 2013.

Univ.-Prof. Dr. Roland Goertz

Unterschiede:

- Maximale Temperatur,
- Maximal freigesetztes Gasvolumen,
- Zusammensetzung der freigesetzten Gase / Dämpfe,
- Zündung / Nicht-Zündung von Gasen / Dämpfen

Darauf kommt es an:

- Die Kathode (aktive) Material
- Der Ladezustand (SOC)
- Die Art des Batteriegehäuses (Hart Case, Pouch-Zelle)

Sekundär = wiederaufladbar

 $Li_{x}(Ni_{0.80}Co_{0.15}AI_{0.05})O_{2}(NCA)$

Sekundär wiederaufladbar

- Entladene NCA-Zellen zeigten keinen "thermal runaway"
- Zellen mit SOC> 25% zeigten einen "thermal runaway"
- Wenn (teilweise) geladene NCA-Zellen über eine kritische Temperatur hinaus erhitzt wurden, erhöhten sich die Zelltemperaturen plötzlich auf Höchstwerte im Bereich von 739 °C und 1075 °C.
- Überladene NCA-Zellen (SOC> 100%) zeigten deutlich niedrigere Auslösetemperaturen zwischen 65 ° C und 80 ° C für den "thermal runaway".

Thermal Runaway: NCA-Cells

A. W. Golubkov et al., "Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes - impact of state of charge and overcharge," RSC Adv., 2015, 5, 57171-57185.

Sekundär = wiederaufladbar

- Leichte exotherme Reaktionen wurden f
 ür eine Zelle gesehen, die auf 25% SOC aufgeladen wurde
- LFP-Zellen, die auf SOC > 50% aufgetragen wurden, zeigten ausgeprägten thermal runaway.
- Die Erhöhung der SOC führte zu erhöhten maximalen Temperaturen während des thermischen Durchlaufs.
- Die Höchsttemperaturen reichten von 283 °C bis 448 °C.
- Die Auslösetemperatur betrug 140 ° C f
 ür Zellen zwischen 50% SOC und 100% SOC.
- Die auf 130% SOC überladene Zelle zeigte bereits bei 80 ° C eine exotherme Reaktion.

Thermal Runaway: LFP-Cells

A. W. Golubkov et al., "Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes - impact of state of charge and overcharge," RSC Adv., 2015, 5, 57171-57185.

Sekundär

= wiederaufladba

Ha	zard Level	Classification Criteria, Effect
0	No effect	No effect, no loss of functionality
1	Passive Protection activated	No defect, no leakage, no venting, no fire or flame, no rupture, no explosion, no exothermic reaction or thermal runaway, cell reversibly damaged, repair of protection device needed
2	Defect Damage	No leakage, no venting, no fire or flame, no rupture, no explosion, no exothermic reaction or thermal runaway, cell irreversibly damaged, repair needed
3	Leakage > 50%	No venting, no fire or flame, no rupture, no explosion, weight loss ≤ 50 % of the electrolyte weight electrolyte = solvent + salt
4	Venting > 50%	No fire or flame, no rupture, no explosion, weight loss ≥ 50 % of the electrolyte weight
5	Fire or Flame	No rupture, no explosion, i.e. no flying parts
6	Rupture	No explosion, but flying parts, ejection of parts of the active mass
7	Explosion	Explosion, i.e. disintegration of the cell

Sekundär = wiederaufladbar

Univ.-Prof. Dr. Roland Goertz

ZERSETZUNGSPRODUKTE VON LI-IONEN-AKKUS LiPF₆ ALS LEITSALZ

Sekundär = wiederaufladbar

$LiPF_6 \xrightarrow{380 \text{ K}} LiF + PF_5$	(unt	er Ausschluss	von
$PF_5 + H_2O \rightarrow POF_3$	+	2 HF	
$LiPF_6 + H_2O \rightarrow LiF + POF$	3 +	2 HF	
$POF_3 + 3 H_2O \rightarrow H_3PO_4$	+	3 HF	

Hui Yang a, Guorong V. Zhuangb, and Philip N. Ross, Jr. Thermal Stability of LiPF₆ Salt and Li-ion Battery Electrolytes Containing LiPF₆ Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720

F. Larsson, P. Andersson, B.-E. Mellander: Lithium-Ion Battery Aspects on Fires in Electrified Vehicles on the Basis of Experimental Abuse Tests; Batteries 2016, 2, 9

Ausbeuten:

Wasser)

HF: ca. 50 - 120 mg/WhPOF₃ : HF = 1 : 20

• Überladung mit 120 A für 30 Minuten – ohne Spülung

- Entstehung von 6.28 Mol bzw. 153.5 L (RT, atm) Ventinggas
- 0.68 mg F⁻, entspricht 0.72 mg bzw. 0.88 mL/5.73 ppm (RT, atm) HF Gas

• Überladung mit 120 A für 21 Minuten – mit mehrfacher Spülung

Akku 6 Temperaturverlauf

Akku 6 Druckverlauf

- Entstehung von 6.17 Mol bzw. 151.1 L (RT, atm) Ventinggas
- 0.22 mg F⁻, entspricht 0.24 mg bzw. 0.14 mL/0.93 ppm (RT, atm) HF Gas

• Überladung mit 120 A für 30 Minuten – ohne Kühlfallen und eine Spülung

- Entstehung von 5.86 Mol bzw. 143.4 L (RT, atm) Ventinggas
- 3.30 mg F⁻, entspricht 3.48 mg bzw. 2.13 mL/14.85 ppm (RT, atm) HF Gas

BERGISCHE UNIVERSITÄT WUPPERTAL

Analyse von Akkurückständen (Ruß) - Ionenchromatographie

• Vermutung: HF wird im Ruß "gebunden"

Ionenchromatogramm eines wässrigen Extraktes aus Akkurückständen.

• 5 g Ruß enthalten nach Extraktion mit Wasser (10 Stunden) ca. 70 mg (1,4 w%) wasserlösliche Fluorid-Anionen

Analyse von Akkurückständen (Ruß) - Rasterelektronenmikroskop

Microscope: Hitachi TM-3030 HT: 15kV Sample: Akku-Ruß

Secondary electron Aufnahme von Akkurückständen.

Back-scattered electron Aufnahme von Akkurückständen.

Analyse von Akkurückständen (Ruß) - Röntgenfluoreszenz

Analyse von Akkurückständen (Ruß) - Rasterelektronenmikroskop

Microscope: Hitachi TM-3030 HT: 15kV Sample: Akku-Ruß

Secondary electron Aufnahme von Akkurückständen.

Back-scattered electron Aufnahme von Akkurückständen.

Analyse von Akkurückständen (Ruß) - Röntgenfluoreszenz

- Fluoreszenzmuster zeigen keine Manganfluoride (MnF_{2/3/4}), ausschließlich Oxide
- Das Vorhandensein von Cobaltfluorid (CoF₂) und Nickelfluorid (NiF₂) wäre möglich, allerdings überwiegen Oxide
- Größte Übereinstimmung zwischen Phosphor und Fluor
 - Möglicherweise [PF₆]⁻ und dessen Derivate

Average		
Element	Weight %	Atomic %
С	57.06	71.00
0	18.71	17.56
Al	2.05	1.14
Со	4.17	1.06
Mn	4.38	1.20
Ni	4.36	1.12
F	8.13	6.39
Р	0.85	0.41
Cu	0.17	0.04
Na	0.07	0.05
Si	0.04	0.02
Total	100.00	100.00

BERGISCHE UNIVERSITÄT WUPPERTAL

Analyse von Akkurückständen (Ruß) - Nuclear Magnetic Resonance (NMR)

• Keine wasserlöslichen Phosphorverbindungen und nur eine wasserlösliche Fluorverbindung (Fluorid)

Analyse von Akkurückständen (Ruß) – Headspace GC-MS

 Akku 6 – Gasanalyse (MGA-Prime; NDIR), Spülung mit Druckluft

Zeitlicher Verlauf der Konzentrationen von CO, CH₄ und C₃H₈.

BERGISCHE UNIVERSITÄT WUPPERTAL

 Akku 6 – Gasanalyse (MGA-Prime; NDIR), Spülung mit Druckluft

Unmittelbar nach dem thermischen Durchgehen.

Spülung mit Druckluft ca. 30 Minuten nach dem thermischen Durchgehen.

Akku 6 – Gasanalyse (MGA-Prime; NDIR)

Spülung mit Druckluft ca. 2 Stunden nach dem thermischen Durchgehen.

Spülung mit Druckluft ca. 2,5 Stunden nach dem thermischen Durchgehen.

BERGISCHE UNIVERSITÄT NUPPERTAL

• Akku 6 – Gasanalyse (MGA-Prime; NDIR)

Spülung mit Druckluft ca. 3 Stunden nach dem thermischen Durchgehen.

• Annahme: auch Stunden nach dem Thermal Runaway finden chemische Reaktionen statt und bilden unter anderem Methan

Akku 7 – Gasanalyse (GC-MS)

GC-MS Analyse des Ventinggases eingeleitet in Dichlormethan.

| Folie 51

BERGISCHE UNIVERSITÄT WUPPERTAL

Univ.-Prof. Dr. Roland Goertz

Lehrstuhl für Abwehrenden Brandschutz

ZERSETZUNG EINES MODULS DURCH ÜBERLADEN

LÖSCHVERSUCHE MIT WASSER

Univ.-Prof. Dr. Roland Goertz

ZERSETZUNG MODUL DURCH ÜBERLADEN LÖSCHEN MIT KOHLENDIOXID

Univ.-Prof. Dr. Roland Goertz

BERGISCHE Universität

WUPPERTAL

ERGEBNISSE DER LÖSCHVERSUCHE AN

MODELLSYSTEMEN

Ergebnisse

einfacher "makroskopischer" Löschversuche an den Modellsystemen

Univ.-Prof. Dr. Roland Goertz

BERGISCHE UNIVERSITÄT WUPPERTAL

Chemische Gefahren

Univ.-Prof. Dr. Roland Goertz

OTTOKRAFTSTOFF

otalEnergies	SDS-Nr.	56123
	•	

Störfallverordnung

Dieses Produkt unterliegt der deutschen Störfallverordnung.

Namentlich aufgeführte Stoffe

Name	Bezugsnummer
OTTOKRAETSTOEE und NAPHTHA	2.3.1
Wassergefährdungsklasse : 3	

- Kleine Mengen an Li-Ion-Batterien sind kein Problem f
 ür die Feuerwehr!
- Größere Mengen an Batterien
 - können explodieren (?)
 - Verursachen Gefahren durch HF-Generation
 - (aktuell keine valide Information über die Konzentration/Menge)
- Die Lagerung großer Mengen von Li-Ionen-Batterien benötigt eine Sprühwasser-Löschanlage (normale Sprinkler sind zu langsam)
 - Um die HF-Kontamination der Feuerwehr zu reduzieren
 - Um die Explosionsgefahr zu reduzieren
 - Um die Geschwindigkeit der thermischen Durchgehens zu reduzieren
- Einsatzkräfte brauchen mehr Abstand zu brennenden Batterien als zu anderen festen Brennstoffen
- Wasser verwenden um die korrosiven und giftigen Gase auszuwaschen

Vielen Dank für Ihre Aufmerksamkeit!

